投稿指南
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。

环境科学与资源利用论文_基于改进粒子群优化长

来源:计算机时代 【在线投稿】 栏目:期刊导读 时间:2021-10-06
作者:网站采编
关键词:
摘要:文章摘要:针对燃煤电厂脱硫系统出口SO 2 含量难以稳定控制的问题,提出了一种基于改进粒子群算法(IPSO)优化长短时记忆(LSTM)神经网络的IPSO-LSTM预测模型。首先利用主成分分析(

文章摘要:针对燃煤电厂脱硫系统出口SO2含量难以稳定控制的问题,提出了一种基于改进粒子群算法(IPSO)优化长短时记忆(LSTM)神经网络的IPSO-LSTM预测模型。首先利用主成分分析(PCA)计算各个变量的贡献率从而筛选出模型的辅助变量,实现辅助变量的降维。其次,利用改进粒子群算法确定LSTM神经网络的神经元数量、学习率和迭代次数。最后,将选定的辅助变量作为IPSO-LSTM预测模型的输入,预测出口SO2含量,采用国内某2×600 MW电厂脱硫数据进行仿真,并与相关11种模型进行对比。仿真结果表明,本文模型预测误差最小,其均方根误差为0.98 mg/m3,平均相对误差为1.81%;与传统LSTM、LSSVM模型相比,预测精度分别可提高72%和81%;与其他相关模型相比,改进的PSO可以提高PSO的全局寻优能力和收敛速度,当LSTM神经网络具有2层隐含层时,IPSO-LSTM模型预测精确度最高。

文章关键词:

项目基金:《计算机时代》 网址: http://www.jsjsdzzs.cn/qikandaodu/2021/1006/1984.html



上一篇:电力工业论文_基于矩阵算法和BP神经网络的智能
下一篇:船舶工业论文_一种基于极限学习机的推力分配方

计算机时代投稿 | 计算机时代编辑部| 计算机时代版面费 | 计算机时代论文发表 | 计算机时代最新目录
Copyright © 2018 《计算机时代》杂志社 版权所有
投稿电话: 投稿邮箱: