投稿指南
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。

机械工业论文_基于深度迁移学习的多点频域振动

来源:计算机时代 【在线投稿】 栏目:期刊导读 时间:2021-10-22
作者:网站采编
关键词:
摘要:文章摘要:针对多输入多输出神经网络(MIMO-ANN)进行多点频域振动响应预测时需要为每个频率点独立建立神经网络模型、独立随机选择神经网络模型初值导致的训练时间长、预测精度低

文章摘要:针对多输入多输出神经网络(MIMO-ANN)进行多点频域振动响应预测时需要为每个频率点独立建立神经网络模型、独立随机选择神经网络模型初值导致的训练时间长、预测精度低等问题,提出了一种基于MIMO-ANN和模型迁移学习的多点频域振动响应预测方法。本次研究对于多源不相关载荷未知条件下的基于数据驱动的振动响应预测问题进行了形式化描述,并比较了其与不相关多源载荷已知情况下基于数据驱动的多点频域振动响应预测问题的不同之处。首先,将某频率点下的多个振动响应已知的测点的自功率谱作为输入,多个振动响应未知的测点的自功率谱作为输出,将两部分历史数据集构造成为训练集,利用MIMO-ANN建立该频率下的未知点振动响应预测模型;其次,根据传递函数在频域的连续性,利用该频率下训练好的MIMO-ANN的权值迁移到相邻频率作为其MIMO-ANN的初值;再次,利用此相邻频率下的历史数据进行训练,从而得到此频率下的预测模型;最后,不断循环此过程,直到所有频率点的模型全部训练完成。该方法解决了矩阵病态求逆问题,可以获得更好的神经网络模型的初值,不容易陷入局部最优,加快了神经网络的收敛速度。在圆柱壳声振实验数据集的多点响应预测结果表明,在多源载荷未知条件下,该方法比基于无迁移学习神经网络、多元线性回归、传递函数的方法,预测精度、训练效率更高。

文章关键词:

项目基金:《计算机时代》 网址: http://www.jsjsdzzs.cn/qikandaodu/2021/1022/2027.html



上一篇:刑法论文_论数字货币犯罪的刑法规制
下一篇:海洋学论文_知识图谱在海洋领域的应用及前景分

计算机时代投稿 | 计算机时代编辑部| 计算机时代版面费 | 计算机时代论文发表 | 计算机时代最新目录
Copyright © 2018 《计算机时代》杂志社 版权所有
投稿电话: 投稿邮箱: